## Chaotic Map Trajectories

Logistic Map $\mu=3.80, I_{-} 0=0.87$


Same example as before, plot showing only the iterative intensities $I_{n}$ on the curve representing the map profile function $f(I)$. A large part of the brightness spectrum is covered by the trajectory already after 500 iteration.
No apparent repetitive intensity pattern.
Intensity flashes between bright and dim.

Same example as above, plot shows iterative intensities $I_{n}$ vs $n$. Some, but not exact similarities, intermittency domains, strongly dependent on initial condition $I_{0}$.

Logistic Map $\mu=3.8$, I_ $0=0.87$


## Sensitivity to Initial Conditions

Logistic Map $1-3.85,1 \_0=0.17$


Logistic Map $\mu-3.85,1 \_0=0.175$


Illustration of sensitivity to initial conditions for $\mu=3.85$, fixpoint at $I=0.74$, strange attractor IC: $I_{0}=0.17, N=100$ iterations Blinking alternatively with 3 different intensities

Illustration of sensitivity to initial conditions for $\mu=3.85$, fixpoint at $I=0.74$, strange attractor IC: $I_{0}=0.175, N=100$ iterations
Blinking alternatively with a continuum of intensities filling most of the accessible intensity range

## Agenda: Complex Processes in Nature and Laboratory

Order and Chaos, determinism and unpredictability

Non-linear dynamics in nature and their modeling
Examples (climate, planetary motion), mathematical model (logistic map)
Stability criteria (Lyapunov), stationary states

Complex kinetics in coupled chemical reactions
Self-organization in coupled chemical reactions Self replication in autocatalytic reactions
Cellular automata and fractal structures

Thermodynamic states and their transformations
Collective and chaotic multi-dimensional systems
Energy types equilibration,
flow of heat and radiation

Reading Assignments
Weeks 1\&2
LN II: Complex
processes

Kondepudi Ch. 19
Additional Material
J.L. Schiff:

Cellular Automata,
Ch.1, Ch. 3.1-3.6

McQuarrie \& Simon
Math Chapters
MC B, C, D,

## Logistic Map Features

Logistic Map $\mu$-2.5



Profile function $f$, amplification factor $\mu$
Fixpoints $I_{f}: f\left(I_{f}\right)=I_{f} \quad$ Trivial $I_{f}=0$
Non-trivial FP exists for $\mu>1$
Trajectory ensembles with $I_{o} \approx I_{f}$ fixpoints "attract" or "repel" (scatter)
$\left|\left(\frac{d f}{d I}\right)_{I_{f}}\right|<1 \quad\left(I_{f}=\right.$ Attractor $)$
$\left|\left(\frac{d f}{d I}\right)_{I_{f}}\right|>1\left(I_{f}=\right.$ Repellor, strange attractor $)$

Can you give some plausible geometrical or analytical arguments for this rule?

## Logistic Map Features

Logistic Map $\mu$-2.5



Profile function $f$, amplification factor $\mu$
Fixpoints $I_{f}: f\left(I_{f}\right)=I_{f} \quad$ Trivial $I_{f}=0$
Non-trivial FP exists for $\mu>1$
Trajectory ensembles with $I_{o} \approx I_{f}$ fixpoints "attract" or "repel" (scatter)
$\left|\left(\frac{d f}{d I}\right)_{I_{f}}\right|<1 \quad\left(I_{f}=\right.$ Attractor $)$
$\left|\left(\frac{d f}{d I}\right)_{I_{f}}\right|>1\left(I_{f}=\right.$ Repellor, strange attractor $)$

Check behavior by varying initial conditions, Compare trajectories with $\left(I_{0}=I_{f} \pm \varepsilon\right)$
$\rightarrow$ Different sensitivity to initial condition.
df $>\mathrm{d} \boldsymbol{I} \rightarrow$ distance between trajectories grows

## Stability of Complex Systems

Stable Equilibrium


Unstable Equilibrium


Illustration of potential equilibrium points and trends of neighboring trajectories

What are asymptotic states reached in limit $t, n \rightarrow \infty$ ?
Can they be reached from any initial conditions?

Specifically: deterministic or chaotic behavior?
$\rightarrow$ Need stability criterion,
one-dimensional classical mechanics:
motion driven by a potential $V(x)$
Force equilibrium $\leftrightarrow \rightarrow V(x)=$ extremum:

$$
\left.\frac{\partial V(x)}{\partial X}\right|_{x_{e q}}=\left.0 \quad \vec{\nabla} V(\vec{r})\right|_{r_{r e q}}=\overrightarrow{0}
$$

Corresponding effects of development of neighboring trajectories:

Converge towards stable equilibrium
Diverge away from unstable equilibrium

## Stability of Complex Systems

Stable Equilibrium


Unstable Equilibrium


Illustration of potential equilibrium points and trends of neighboring trajectories

Integrate 1D equation of motion EoM along $\boldsymbol{x}$ numerically $\rightarrow 1 D$ map $\boldsymbol{x}_{\boldsymbol{n + 1}}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$

Example: Point particles, mass $m$, force $F$ (Can you write down EoM $\boldsymbol{x}_{\mathrm{n}}=\boldsymbol{x}\left(\mathrm{t}_{\mathrm{n}}\right)$ ?)

2 similar initial conditions given $\boldsymbol{x}$ and $(\boldsymbol{x}+\varepsilon)$ small $\varepsilon>0$.

Step $\boldsymbol{n}$ : trajectories at $f^{n}(x)$ and $f^{n}(x+\varepsilon)$
Convergence/divergence $\longleftrightarrow$ Distance criterion $\delta$

How far apart are initially close trajectories after step $\boldsymbol{n}$ ?
$\delta(\varepsilon, n):=\left|f^{n}(x)-f^{n}(x+\varepsilon)\right|=:|\varepsilon| \cdot e^{\lambda \cdot n}$
Legitimate definition of $\lambda$, illustrates behavior $n \rightarrow \infty$

## Lyapunov Stability Criterion

Stable Equilibrium


Unstable Equilibrium


Illustration of potential equilibrium points and trends of neighboring trajectories

## Lyapunov exponent:

divergence $\lambda>0$ Convergence $\lambda<0$
Large positive exponents indicate extreme sensitivity to initial conditions $\rightarrow$ chaotic dynamics

$$
\begin{aligned}
& \delta(\varepsilon, n):=\left|f^{n}(x)-f^{n}(x+\varepsilon)\right|=:|\varepsilon| \cdot e^{\lambda n} \\
& \rightarrow \operatorname{Ln}\left|\left\{\frac{f^{n}(x)-f^{n}(x+\varepsilon)}{\varepsilon}\right\}\right|=\boldsymbol{\lambda} \cdot n \\
& \text { Infinitesimal } \varepsilon \\
& \qquad \lambda=\frac{1}{n} \operatorname{Ln}\left|\frac{d f^{n}(x)}{d x}\right|
\end{aligned}
$$

How to calculate derivative of Implicit function $f^{n}(x)$ ?

## Lyapunov Exponent

$\boldsymbol{\lambda}=\frac{1}{n} L n\left|\frac{d f^{n}(x)}{d x}\right|$

## Implicit function

$$
f^{n}(x)=f\left(x_{n-1}\right)=\ldots .=f\left(f\left(f\left(f\left(x_{n-4}\right)\right)\right)\right) \ldots .
$$

Chain Rule for differentiation:

$$
\begin{aligned}
\frac{d f^{n}}{d x} & =\frac{d f\left(x_{n-1}\right)}{d x_{n-1}} \cdot \frac{d x_{n-1}}{d x}=\frac{d f\left(x_{n-1}\right)}{d x_{n-1}} \cdot \frac{d x_{n-1}}{d x_{n-2}} \cdot \frac{d x_{n-2}}{d x}=\ldots \ldots . \\
& =\frac{d f\left(x_{n-1}\right)}{d x_{n-1}} \cdot \frac{d f\left(x_{n-2}\right)}{d x}=\frac{d f\left(x_{n-1}\right)}{d x_{n-1}} \cdot \frac{d f\left(x_{n-2}\right)}{d x_{n-2}} \cdot \frac{d f\left(x_{n-3}\right)}{d x_{n-3}} \cdots \cdots \frac{d f(x)}{d x} \\
L n\left|\frac{d f^{n}}{d x}\right|=L n \prod_{i=0}^{n-1}\left|f^{\prime}\left(x_{i}\right)\right|_{x_{i}}= & \sum_{i=0}^{n-1} L n\left|f^{\prime}\left(x_{i}\right)\right|_{x_{i}} \\
& \lambda_{n}=\frac{1}{n} \cdot \sum_{i=0}^{n-1} L n\left|f^{\prime}\left(x_{i}\right)\right|_{x_{i}} \quad \begin{array}{l}
\text { Large } n \rightarrow \text { test the } \\
\text { shape of } f \text { at many } \\
\text { positions } x_{i}
\end{array}
\end{aligned}
$$

## Lyapunov Exponent $=\boldsymbol{f}(\mu)$



Asymptotic iterates and Lyapunov exponent for the logistic map:

Gain factors $\mu$ determine dynamics
$\mu \geq \mu_{1}$ : at least bifurcation
$\mu \geq \mu_{2}$ : at least 2 bifurcations
$\mu \geq \mu_{\infty}: \lambda$ generally $>0, \rightarrow$ Chaotic system behavior, small special domains for (relatively) orderly behavior.

Similar :
$f(x):=\mu \cdot x^{k}\left(1-x^{k}\right)^{1 / k}$ and
$f(x):=\mu(x) \cdot x^{k}\left(1-x^{k}\right)^{1 / k}$

## Outlook and Conclusions (for our environment)

$\square$ Non-linear dynamics of complex systems can lead to orderly or chaotic behavior, depending on non-linearity $\rightarrow$ amplification $\mu$ for log. map. strength of positive feed back loops.
$\square$ Chaotic "dynamics include sudden wild oscillations in system properties at "Tipping Points,"
$\square$ Given an observed non-linear behavior for a specific system (example: Earth albedo), it is possible to estimate a Logistic-Map model amplification parameter $\mu$.

- Extensions of simple 1D Logistic-Map model include multiple dimensions $\{x, y\}$ provide understanding of population dynamics (predator-prey)

$$
d x / d t=\mu(x, y) \cdot x \cdot[1-x] \quad d y / d t=\mu(x, y) \cdot y \cdot[1-y]
$$

$\square$ Earth albedo can change rapidly, leading to tipping points in climate.

## Agenda: Complex Processes in Nature and Laboratory

Order and Chaos, determinism and unpredictability

Non-linear dynamics in nature and their modeling Examples (climate, planetary motion), mathematical model (logistic map) Stability criteria (Lyapunov), stationary states

Complex kinetics in coupled chemical reactions Self-organization in coupled chemical reactions Self replication in autocatalytic reactions Cellular automata and fractal structures

Thermodynamic states and their transformations Collective and chaotic multi-dimensional systems Energy types equilibration, flow of heat and radiation

Reading Assignments
Weeks 1\&2
LN II: Complex
processes

Kondepudi Ch. 19
Additional Material
J.L. Schiff:

Cellular Automata,
Ch.1, Ch. 3.1-3.6

McQuarrie \& Simon
Math Chapters
MC B, C, D,

## Complex Chemical Kinetics (Example Dissociation)



How do some complex chemical reactions behave? Look at "simple" chemical reactions $\rightarrow$ often involve several, interrelated steps.

Unlikely to achieve aligned configuration in a collision between $\mathrm{H}_{2}$ and $\mathrm{Br}_{2}$

Stoichiometric sum

$$
\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr} \square\left\{\begin{array}{l}
1 . \quad \mathrm{Br}_{2} \rightleftharpoons 2 \mathrm{Br} \\
2 . \mathrm{Br}+\mathrm{H}_{2} \rightarrow \mathrm{HBr}+\mathrm{H} \\
3 . \mathrm{H}+\mathrm{Br} \rightarrow \mathrm{HBr}
\end{array}\right.
$$

$\mathrm{Br}_{2}$ dissociation $\rightarrow$ atomic Br

1. $\mathrm{HBr}+$ atomic H
2. HBr

Reaction rates for 2. and 3. depend on [atomic $B r$ ].
Depleting [atomic Br ] $\rightarrow$ dissociation of $\mathrm{Br}_{2}$.
$\rightarrow$ feed-back between the reactions 1 and $(2,3) \rightarrow$ Le Chatelier Principle
$\rightarrow$ Expect complex behavior of coupled chemical reactions (orderly, oscillatory, or chaotic)

## Complex Chemical Kinetics (Auto-Catalytic)

Auto-catalytic reaction (like "Brusselator"), following treatment by Kondepudi \& Prigogine


External parameters: constant flow of reactants $S \& T$, Intrinsic catalysts $A \& B \rightarrow$, output product $P$,

$\rightarrow 3$ reactions coupled through production and consumption of intermediate catalysts $A$ and $B$. Constant ("stationary") output $P$ desired maintained through constant influx $S$ and $T$
$\rightarrow$ Set up non-equilibrium rate equations, look for stationary concentrations.

## Complex Chemical Kinetics (Auto-Catalytic)



$$
\text { Define concentrations } \vec{X}=\binom{[A]}{[B]}, t-\text { dep. rates } \vec{Z}=\frac{d}{d t}\binom{[A]}{[B]}
$$

Rate equations, Constant external input flows [S], [T]

$$
\left\{\begin{array}{l}
\frac{d}{d t} X_{1}=k_{1} \cdot[S] \cdot[T]-k_{2} \cdot[S] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}=Z_{1}(\vec{X},[S],[T]) \\
\frac{d}{d t} X_{2}=k_{2} \cdot[S] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}=Z_{2}(\vec{X},[S],[T])
\end{array}\right.
$$

## Complex Chemical Kinetics (Auto-Catalytic)

Auto-catalytic reaction


Stationary concentration of B: $\quad d X_{2} / d t=k_{2} \cdot[s] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}$

$$
\frac{d}{d t}[B]=\frac{d}{d t} X_{2}=0 \quad \begin{aligned}
& k_{2} \cdot[S] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}=0 \\
& k_{2} \cdot[S] \cdot X_{1}=k_{3} \cdot X_{1} \cdot X_{2} \rightarrow X_{2}=\frac{k_{2}}{k_{3}} \cdot[S]
\end{aligned}
$$

Stationary concentration of A: $\quad d X_{1} / d t=k_{1} \cdot[s] \cdot[T]-k_{2} \cdot[s] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}$
$\frac{d}{d t}[A]=\frac{d}{d t} X_{1}=0$

$$
\begin{aligned}
& k_{1} \cdot[S] \cdot[T]-k_{2} \cdot[S] \cdot X_{1}-k_{3} \cdot X_{1} \cdot X_{2}=0 \\
& k_{1} \cdot[S] \cdot[T]=2 k_{2} \cdot[S] \cdot X_{1} \rightarrow X_{1}=\frac{k_{1}}{2 k_{2}} \cdot[T]
\end{aligned}
$$

## Complex Chemical Kinetics (Auto-Catalytic Rxns)

Auto-catalytic reaction

$$
S+T \rightarrow P \quad\left\{\begin{array}{l}
1 . S+T \xrightarrow{k 1} A \\
2 \cdot S+A \xrightarrow{k 2} B \\
3 \cdot A+B \xrightarrow[k 3]{ } P
\end{array}\right.
$$

Stationary state concentrations

$$
[A]_{s}=X_{1 s}=\frac{k_{1}}{2 k_{2}} \cdot[T] ; \quad[B]_{s}=X_{2 s}=\frac{k_{2}}{k_{3}} \cdot[S]
$$

Stationary state concentrations: At given $[S]$ and $[T]$, intermediates $A$ and $B$, and product $P$ reach extreme values in time. But is mode of operation stable or unstable?

Check how small variations in extreme values $\boldsymbol{X}_{1 s}, \boldsymbol{X}_{2 s}$ change with time:

$$
X_{n s} \rightarrow\left(X_{n s}+\delta X_{n s}\right) \xrightarrow{\text { Rate Eqs }} \frac{d}{d t}\left(X_{n s}+\delta X_{n s}\right)_{t} \rightarrow \delta X_{n s}(t) ; n=1,2
$$

For stable ops, $\delta X_{n s}(t)$ should vanish $t \rightarrow \infty$ $\square$

## Cooperative Belousov-Zhabotinski (BZ) Reaction

Oxidation of malonic acid with cerium bromate, $\mathrm{CeBr}_{3}$ (Kondepudi\&Prigogine Ch. 19)

$$
2 \mathrm{BrO}_{3}^{-}+3 \mathrm{CH}_{2}(\mathrm{COOH})_{2}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{BrCH}(\mathrm{COOH})_{2}+3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Produces colored traveling wave patterns on surface of reaction vessel.


Similar oscillations: Lotka-Volterra
Ce catalyst, [Ce]=const., but oscillations between $\mathrm{Ce}^{3+}$ and $\mathrm{Ce}^{4+}$, $\rightarrow$ alternating colors.

Intermediate reaction step $\mathrm{BrO}_{2}+\mathrm{Ce}^{3+}+\mathrm{H}^{+} \rightarrow \mathrm{HBrO}_{2}+\mathrm{Ce}^{4+}$


## Relevant Intro Literature

- The New Physics, Paul Davis (Editor), Cambridge University Press New York, 1989.,WileyInterscience Publ., New York 1998
- A. Babloyantz, Molecules, Dynamics, and Life; An Introduction to Self-Organization of Matter, Wiley-Interscience Publ., New York 1986
- H. O. Peitgen, H. Jürgens, D. Saupe, Chaos and Fractals - New Frontiers of Science, Springer Verlag New York, 1992.
- G.L. Baker and J.P. Gollub, Chaotic Dynamics, an Introduction, Cambridge University Press, Cambridge 1996.
- C. Beck and F. Schlögl, Thermodynamics of chaotic systems, Cambridge University Press, Cambridge 1993.
- F. Scheck: Mechanics, From Newton's Laws to Deterministic Chaos (Ch. 6.4), Springer Verlag Berlin 1990.
- R. Dawkins: The Blind Watchmaker, W.W. Norton\&Co., New York 1986

