
Chaotic Map Trajectories

Same example as before, plot showing only 
the iterative intensities In on the curve 
representing the map profile function f(I).

A large part of the brightness spectrum is 
covered by the trajectory already after 500 
iteration. 
No apparent repetitive intensity pattern. 

Intensity flashes between bright and dim.
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Same example as above, plot shows 
iterative intensities In vs n. Some, but not 
exact similarities, intermittency domains, 
strongly dependent on initial condition I0.



Sensitivity to Initial Conditions

Illustration of sensitivity to initial conditions for 

 = 3.85,  fixpoint at I = 0.74, strange attractor

IC:  I0 = 0.17, N = 100 iterations

Blinking alternatively with 3 different intensities
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FP

FP

Illustration of sensitivity to initial conditions for 

 = 3.85,  fixpoint at I = 0.74, strange attractor

IC:  I0 = 0.175, N = 100 iterations

Blinking alternatively with a continuum of intensities filling 
most of the accessible intensity range
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Logistic Map Features

Profile function f, amplification factor 
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Can you give some plausible geometrical or 

analytical arguments for this rule?
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Logistic Map Features

Profile function f, amplification factor 
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Check behavior by varying initial conditions, 

Compare  trajectories with (I0 =If ± e) 

→ Different sensitivity to initial condition.

df  > dI → distance between trajectories grows

fI I

df

dI
=

 
 
 



Stability of Complex Systems

What are asymptotic states reached in 
limit t, n → ∞ ? 
Can they be reached from any initial conditions?

Specifically: deterministic or chaotic behavior?

→ Need stability criterion, 
one-dimensional classical mechanics:

motion driven by a potential V(x)

Force equilibrium → V(x)=extremum: 
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories

Corresponding effects of development of 
neighboring trajectories:

Converge towards stable equilibrium
Diverge away from unstable equilibrium 
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Stability of Complex Systems
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories

Integrate 1D equation of motion EoM along x
numerically → 1D map xn+1 = f(xn)

Example: Point particles, mass m, force F
(Can you write down EoM xn = x(tn) ?)

2 similar initial conditions given x and 
(x+e ) small e > 0.

Step n: trajectories at  fn(x) and fn(x+e)

Convergence/divergence ➔ Distance criterion d

V

  Unstable Trajectories

Stable Trajectories
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How far apart are initially close trajectories after step n?

Legitimate definition of l , illustrates behavior n→∞



Lyapunov Stability Criterion
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Illustration of potential 
equilibrium points and 
trends of neighboring 
trajectories

V
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Lyapunov exponent: 
divergence l  0 Convergence l  0 

Large positive exponents indicate extreme 
sensitivity to initial conditions→ chaotic dynamics
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Implicit function f x



Lyapunov Exponent

Chain Rule for differentiation:
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Asymptotic iterates and Lyapunov 

exponent for the logistic map:

Gain factors  determine dynamics

 ≥ 1: at least bifurcation

 ≥ 2: at least 2 bifurcations

 ≥ ∞: l generally >0, → Chaotic 

system behavior, small special 

domains for (relatively) orderly 

behavior.
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Outlook and Conclusions (for our environment)

❑ Non-linear dynamics of complex systems can lead to orderly or chaotic   
behavior, depending on non-linearity → amplification  for log. map.  
strength of positive feed back loops.

❑ Chaotic dynamics include sudden wild oscillations in system properties 
at “Tipping Points,”  

❑ Given an observed non-linear behavior for a specific system (example:  
Earth albedo), it is possible to estimate a Logistic-Map model 
amplification parameter  . 

❑ Extensions of simple 1D Logistic-Map model include multiple dimensions 

{x,y}  provide understanding of population dynamics (predator-prey)

❑ Earth albedo can change rapidly, leading to tipping points in climate.
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Complex Chemical Kinetics (Example Dissociation)

How do some complex chemical reactions 
behave? Look at "simple" chemical reactions 
→ often involve several, interrelated steps. 

Unlikely to achieve aligned configuration in a 
collision between H2 and Br2
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2 2
2H Br HBr+ →

2

2

1. 2

2.

3.

Br

H HBr H

H HBr

Br

Br

Br

+ → +

+ →

Stoichiometric sum intermediate steps

equation     
Br2 dissociation → atomic Br

1. HBr + atomic H

2. HBr 

Reaction rates for 2. and 3. depend on [atomic Br].
Depleting [atomic Br]→ dissociation of Br2.
→ feed-back between the reactions 1 and (2,3) → Le Chatelier Principle
→ Expect complex behavior of coupled chemical reactions (orderly, oscillatory, or

chaotic)

2
Br

2
H



Complex Chemical Kinetics (Auto-Catalytic)
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Auto-catalytic reaction (like “Brusselator”), following treatment by Kondepudi & Prigogine

External parameters: constant flow of reactants S & T, 

Intrinsic catalysts A & B  →, output product P, 

→ 3 reactions coupled through production and consumption of intermediate
catalysts A and B. Constant (“stationary”) output P desired
maintained through constant influx S and T

→ Set up non-equilibrium rate equations, look for stationary concentrations.

S

T P

A B

S T P+ →

1

2

3

1.

2.

3.

k

k

k

S T

S

P

A

A

A

B

B

+ ⎯⎯⎯→

+ ⎯⎯⎯→

+ ⎯⎯⎯→

Net Reaction intermediate steps     



Complex Chemical Kinetics (Auto-Catalytic)
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Auto-catalytic reaction

S

T P

A B

S T P+ →
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A Ad
Define concentrations X , t dep. rates Z

B Bdt

Rate equations,

Constant external input 

flows [S], [T]



Complex Chemical Kinetics (Auto-Catalytic)
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Auto-catalytic reaction

S

T P

A B

S T P+ →
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Complex Chemical Kinetics (Auto-Catalytic Rxns)
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Auto-catalytic reaction

S

T P

A B

S T P+ →
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S
k

A
k

B XT
k

X ;
k

Stationary state 
concentrations

Stationary state concentrations: At given [S] and [T],  intermediates A and B, and 
product P reach extreme  values in time. But is mode of operation stable or unstable?

Check how small variations in extreme values X1s , X2s change with time:

( ) ( ) ( ); 1,2Rate Eqs

ns ns ns ns ns nst

d
X X X X X X t n

dt
d d d→ + ⎯⎯⎯⎯⎯→ + → =

( ),
ns

For stable ops X t should vanish td → 



Cooperative Belousov-Zhabotinski (BZ) Reaction
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Oxidation of malonic acid with cerium bromate, CeBr3 (Kondepudi&Prigogine Ch. 19)

2BrO3
-+3CH2(COOH)2+2H+

→ 2BrCH(COOH)2+3CO2+4H2O

Ce catalyst, [Ce]=const., but
oscillations between Ce3+ and Ce4+,
→ alternating colors.

Intermediate reaction step
3 4

2 2
BrO Ce H HBrO Ce+ + ++ + → +

Produces colored traveling wave patterns on surface of reaction vessel.

4Ce +

2
HBrO

Similar oscillations: Lotka-Volterra



Relevant Intro Literature

• The New Physics, Paul Davis (Editor), Cambridge University Press New York, 1989.,Wiley-
Interscience Publ., New York 1998

• A. Babloyantz, Molecules, Dynamics, and Life; An Introduction to Self-Organization of 
Matter, Wiley-Interscience Publ., New York 1986

• H. O. Peitgen, H. Jürgens, D. Saupe,  Chaos and Fractals – New Frontiers of 
Science, Springer Verlag New York, 1992.

• G.L. Baker and J.P. Gollub, Chaotic Dynamics, an Introduction, Cambridge University 
Press, Cambridge 1996.

• C. Beck and F. Schlögl, Thermodynamics of chaotic systems, Cambridge University 
Press, Cambridge 1993.

• F. Scheck: Mechanics, From Newton’s Laws to Deterministic Chaos (Ch. 6.4), Springer 
Verlag Berlin 1990.

• R. Dawkins: The Blind Watchmaker, W.W. Norton&Co., New York 1986

Stat Theory W. U. Schröder

In
tr

o
 O

rd
er

&
C

h
ao

s
2

0




